Потенциал покоя мембраны мышечного волокна и потенциал действия

Описан механизм развития потенциала действия в мышечном волокне, приводящий к началу мышечного сокращения. Даны понятия потенциала покоя, потенциала концевой пластинки, потенциала действия, деполяризации и реполяризации мембраны мышечного волокна.

ПОТЕНЦИАЛ ПОКОЯ МЕМБРАНЫ МЫШЕЧНОГО ВОЛОКНА И ПОТЕНЦИАЛ ДЕЙСТВИЯ

Давайте рассмотрим, как возникает и развивается потенциал действия, который приводит в дальнейшем к сокращению скелетных мышц. вначале разберем, что такое потенциал покоя.

Потенциал покоя мембраны мышечного волокна

В состоянии покоя сарколемма (мембрана) мышечного волокна поляризована или, другими словами, имеется определенный мембранный потенциал покоя. Снаружи мембраны заряд положительный, а внутри – отрицательный (рис.1). Разность потенциалов между наружной и внутренней оболочками мембраны мышечного волокна составляет 90 мВ.

Потенциал покоя мембраны мышечного волокна и потенциал действия

Рис.1

В тканевой жидкости, окружающей мышечные волокна, выше концентрация ионов натрия (Na+), а в саркоплазме мышечного волокна – ионов калия (К+). Однако положительно заряженные ионы К+ не полностью уравновешивают анионы (отрицательно заряженные ионы), содержащиеся в саркоплазме мышечного волокна, это обусловливает отрицательный заряд мембраны мышечного волокна.

После того, как нервный импульс доходит до синапса (концевой пластинки), соединяющего нервное и мышечное волокна, в синаптическую щель выделяется ацетилхолин. Ацетилхолин проникает (диффундирует) через синаптическую щель и прикрепляется к рецепторам ацетилхолина в области концевой пластинки (месте контакта мотонейрона и мышечного волокна). В результате этого открываются каналы, через которые в мышечное волокно входят ионы Na+ и выходят ионы К+. Ионов натрия в мышечное волокно входит больше, чем выходит из волокна ионов К+. При этом в области концевой пластинки потенциал наружной оболочки мышечного волокна становится отрицательным, а внутренней – положительным. Поэтому мембрана в области концевой пластинки деполяризуется (то есть изменяет свою полярность) и  возникает потенциал концевой пластинки.

Потенциал действия

Возникшая волна деполяризации передается вдоль оболочки мышечного волокна. При этом все больше открывается каналов натрия и все больше ионов Na+ входит внутрь волокна. Скорость проникновения ионов Na+ внутрь мышечного волокна очень высокая - несколько миллионов ионов в секунду (А. Дж. Мак-Комас, 2001).

Каналы калия, однако остаются закрытыми. Через каналы натрия ионы К+ пройти не могут. Это связано с тем, что ионы Na+ имеют диаметр 0,1 нм, а ионы К+ - 0,13 нм.

Этот кратковременный процесс (не более 1-2 мс) деполяризации мышечного волокна называется потенциалом действия. Разность потенциалов между оболочками мышечного волокна доходит  до 120-130 мВ. Волна деполяризации через Т-трубочки достигает саркоплазматического ретикулума, и из него в саркоплазму выделяются ионы кальция (Ca2+) начинается процесс сокращения мышечного волокна. Об этом я расскажу более подробно в дальнейшем.

Реполяризация

После прохождения волны деполяризации, каналы натрия закрываются и открываются каналы калия. Ионы К+ начинают выходить из мышечного волокна, так как они заряжены положительно, а снаружи мембрана заряжена отрицательно. Потенциал действия снижается. Мембрана мышечного волокна восстанавливает свою полярность. Это называется реполяризацией. Вновь снаружи она заряжена положительно, а внутри – отрицательно. Однако существуют отличия от первоначального состояния мышечного волокна, так как снаружи мышечного волокна теперь много ионов К+, а внутри мышечного волокна много ионов Na+ .

Работа натрий-калиевой помпы

Чтобы восстановить исходное состояние мышечного волокна начинает действовать натрий-калиевый насос (помпа). Этот насос за счет энергии АТФ активно выкачивает из мышечного волокна ионы Na+ и закачивает ионы К+ внутрь. Натрий-калиевый насос представляет собой белковую молекулу. Таких молекул в мембране мышечного волокна достаточно много. На работу этого механизма тратится около 70% энергии мышечного волокна.

С уважением, А.В. Самсонова