Потенциал покоя мембраны мышечного волокна и потенциал действия
Описан механизм развития потенциала действия в мышечном волокне, приводящий к началу мышечного сокращения. Даны понятия потенциала покоя, потенциала концевой пластинки, потенциала действия, деполяризации и реполяризации мембраны мышечного волокна.
ПОТЕНЦИАЛ ПОКОЯ МЕМБРАНЫ МЫШЕЧНОГО ВОЛОКНА И ПОТЕНЦИАЛ ДЕЙСТВИЯ
Давайте рассмотрим, как возникает и развивается потенциал действия, который приводит в дальнейшем к сокращению скелетных мышц. Вначале разберем, что такое потенциал покоя.
Потенциал покоя мембраны мышечного волокна
В состоянии покоя сарколемма (мембрана) мышечного волокна поляризована или, другими словами, имеется определенный мембранный потенциал покоя. Снаружи мембраны заряд положительный, а внутри – отрицательный (рис.1). Разность потенциалов между наружной и внутренней оболочками мембраны мышечного волокна составляет 90 мВ.
В тканевой жидкости, окружающей мышечные волокна, выше концентрация ионов натрия (Na+), а в саркоплазме мышечного волокна – ионов калия (К+). Однако положительно заряженные ионы К+ не полностью уравновешивают анионы (отрицательно заряженные ионы), содержащиеся в саркоплазме мышечного волокна, это обусловливает отрицательный заряд мембраны мышечного волокна (то есть ее внутренней оболочки).
Потенциал действия
Возникшая волна деполяризации передается вдоль оболочки мышечного волокна. При этом все больше открывается каналов натрия и все больше ионов Na+ входит внутрь волокна. Скорость проникновения ионов Na+ внутрь мышечного волокна очень высокая — несколько миллионов ионов в секунду (А. Дж. Мак-Комас, 2001) (рис.2).
Каналы калия, однако остаются закрытыми. Через каналы натрия ионы К+ пройти не могут. Это связано с тем, что ионы Na+ имеют диаметр 0,1 нм, а ионы К+ — 0,13 нм.
Этот кратковременный процесс (не более 1-2 мс) деполяризации мышечного волокна называется потенциалом действия. Разность потенциалов между оболочками мышечного волокна доходит до 120-130 мВ. Волна деполяризации через Т-трубочки достигает саркоплазматического ретикулума, и из него в саркоплазму выделяются ионы кальция (Ca2+) начинается процесс сокращения мышечного волокна. Об этом я расскажу более подробно в дальнейшем.
Следует заметить, что процесс распространения волны деполяризации вдоль мышечного волокна можно зарегистрировать посредством электромиографии.
Реполяризация
После прохождения волны деполяризации, каналы натрия закрываются и открываются каналы калия. Ионы К+ начинают выходить из мышечного волокна, так как они заряжены положительно, а снаружи мембрана заряжена отрицательно. Потенциал действия снижается. Мембрана мышечного волокна восстанавливает свою полярность. Это называется реполяризацией. Вновь снаружи она заряжена положительно, а внутри – отрицательно. Однако существуют отличия от первоначального состояния мышечного волокна, так как снаружи мышечного волокна теперь много ионов К+, а внутри мышечного волокна много ионов Na+ .
Работа натрий-калиевой помпы (насоса)
Чтобы восстановить исходное состояние мышечного волокна начинает действовать натрий-калиевый насос (помпа). Этот насос за счет энергии АТФ активно выкачивает из мышечного волокна ионы Na+ и закачивает ионы К+ внутрь. Натрий-калиевый насос представляет собой белковую молекулу. Таких молекул в мембране мышечного волокна достаточно много. На работу этого механизма тратится около 70% энергии мышечного волокна.
Работа кальциевой помпы (насоса)
Чтобы закачать в саркоплазматический ретикулум ионы кальция, начинает работать кальциевый насос. Этот насос закачивает в саркоплазматический ретикулум 90% ионов кальция (Ca2+). Функционирование этого насоса стимулирует присутствие ионов магния ( Mg2+). Для транспорта ионов кальция в саркоплазматический ретикулум также нужна энергия АТФ. Доказано, что для транспорта двух ионов кальция тратится одна молекула АТФ ( А. Дж. МакКомас, 2001).
Литература:
1. Мак-Комас А. Дж. Скелетные мышцы человека. – Киев: Олимпийская литература, 2001.- 407 с.
С уважением, А.В. Самсонова