В четвертой лекции по дисциплине «Биомеханика двигательной деятельности» описываются методы исследования в биомеханике (кино- и видеосъемка, динамометрия,  акселерометрия и электромиография), этапы измерений и состав измерительной системы.  При анализе биомеханических методов обсуждаются положительные и негативные особенности и методов, а также погрешности измерений. Совершенствование биомеханических методов исследования позволило разработать полностью автоматические системы, позволяющие анализировать движения в реальном времени.

Измерение силы задней поверхности бедра

Лекция 4

Методы исследования в биомеханике

4.1. Понятие метода исследования

Метод (греч. methodos – путь к чему-либо) – в самом общем значении – способ достижения цели, определенным образом упорядоченная деятельность.

Метод исследования выбирают исходя из условий проведения и задач исследования. К методу исследования и обеспечивающей его аппаратуре предъявляют следующие требования:

  • Метод и аппаратура должны обеспечивать получение достоверного результата, то есть степень точности измерений должна соответствовать цели исследования;
  • Метод и аппаратура не должны влиять на исследуемый процесс, то есть искажать результаты и мешать испытуемому;
  • Метод и аппаратура должны обеспечивать оперативность получения результата.

Пример. Тренер и спортсмен поставили цель улучшить результат в беге на 100 м на 0,1 с. Спринтер пробегает дистанцию 100 м за 50 шагов, следовательно, время каждого шага должно в среднем быть уменьшено на 0,002 с. Очевидно, для получения достоверного результата, погрешность измерения длительности шага не должна превышать 0.0001 с.

4.2. Этапы измерений

В исследовании какого-либо явления существуют три этапа:

  1. Измерение механических характеристик.

Измерение механических характеристик осуществляется на основе описываемых в этой лекции методов.

  1. Обработка результатов исследования.

В настоящее время для обработки результатов используют специальные компьютерные программы. Так. Например, компьютерная программа Video Motion, предназначенная для атлетизма, позволяет на основе данных видеосъемки рассчитать траекторию, скорость и ускорение движения любой точки тела спортсмена, в том числе и грифа штанги.

  1. Биомеханический анализ и синтез.

На заключительном этапе измерений на основе полученных механических характеристик оценивается техника двигательных действий спортсмена и даются рекомендации по ее совершенствованию.

4.3. Состав измерительной системы

Измерительная система включает в себя:

  • Датчик информации;
  • Линию связи;
  • Регистрирующее устройство;
  • АЦП
  • Компьютер;
  • Устройство для вывода данных.

Датчик – элемент измерительной системы, который непосредственно измеряет (воспринимает) определенную биомеханическую характеристику движения спортсмена. Датчики могут крепиться на спортсмене, спортивном инвентаре и оборудовании, а также опорных поверхностях.

Линия связи служит для передачи информации от датчика к регистрирующему устройству. Линия связи может быть проводной и телеметрической. Проводная связь представляет собой передачу информации через многожильный кабель. Ее достоинством является простота и надежность, недостатком – помехи движениям спортсмена. Телеметрическая связь – передача данных через радиоканал. В этом случае на спортсмене чаще всего расположена передающая антенна, а у регистрирующего устройства есть приемная антенна, посредством которой сигнал воспринимается.

Регистрирующее устройство – прибор, в котором происходит процесс регистрации биомеханических характеристик движений спортсмена.

Долгое время существовала аналоговая форма записи сигнала. Например, аналоговая запись сигнала в видеокамерах на магнитную ленту. В настоящее время широко распространена цифровая форма записи сигнала (в виде последовательности цифр на определенный цифровой носитель, например, DVD-диск).

АЦП – аналого-цифровой преобразователь – устройство, преобразующее аналоговый сигнал в цифровую форму.

ПК – персональный компьютер, в котором происходит обработка поступающего сигнала посредством определенной компьютерной программы. После этого информация о биомеханических характеристиках спортсмена выводится на принтер или монитор.

В настоящее время в области атлетизма (тяжелая атлетика, пауэрлифтинг, бодибилдинг) нашли широкое применение следующие методики исследования:

  • Оптические методы (кино- и видеосъемка с последующим анализом, оптоэлектронная циклография);
  • динамометрия;
  • акселерометрия;
  • электромиография.

Именно об этих методах мы поговорим подробнее.

4.4. Оптические методы исследования

Киносъемка – оптический метод исследования. Этот метод относится к бесконтактным средствам измерения. Основы этого метода заложили Ж.Л.Дагер, Э.Ж.Маре, Э. Майбридж. Это особенно важно, поскольку система не мешает спортсмену при выполнении двигательных действий. Основным техническим средством является кинокамера. Для проведения биомеханических исследований чаще всего применяется кинокамеры с высокой частотой съемки (от 100 кадров в секунду и выше). Недостаток киносъемки является необходимость специальной обработки кинопленки. Поэтому в настоящее время в биомеханических исследованиях чаще всего применяются два других оптических метода: видеосъемка и оптоэлектронная циклография.

Видеосъемка – оптический метод исследования, позволяющий фиксировать двигательное действие на видеопленке или электронной матрице видеокамеры. В настоящее время для биомеханических исследований применяют высокоскоростные видеокамеры, позволяющие выполнять съемку до 1000 кадров в секунду и выше.

Цифровая фотокамера Casio Exlim Pro EX F1
Рис. 4.1. Цифровая фотокамера Casio Exlim Pro EX F1

Примером такой камеры может служить цифровая фотокамера CASIO EXILIM PRO EX-F1 (рис.4.1), позволяющая выполнять скоростную съемку с частотой до 1200 кадр/с. Разрешение матрицы фотокамеры составляет 6,6 Мегапикселов[1]. Для регистрации выполнения спортсменом силовых упражнений данной камерой может использоваться видеосъемка, которую нужно производить с разрешением 1920×1080 пикселей с частотой кадров 60 кадр/с.

Оптоэлектронная циклография – оптический метод исследования, состоящий в том, что на суставах спортсмена крепятся активные маркеры – миниатюрные излучатели, работающие в инфракрасном диапазоне спектра электромагнитных волн. Инфракрасный сигнал от датчиков поступает в телевизионную камеру, матрица которой преобразует поступающие сигналы в цифровой вид и передает в компьютер. Посредством оптоэлектронной циклографии в настоящее время двигательные действия спортсменов изучаются не в плоскости, а в трехмерном пространстве. С этой целью вокруг спортсмена устанавливают несколько регистрирующих камер.

4.5. Динамометрия

Динамометрия – метод, применяемый для оценки силовых способностей спортсмена. Информативным показателем силовых способностей является сила, развиваемая определенной мышечной группой. Для измерения силы мышц используются динамометры, которые делятся на механические и электронные. Основы динамометрии заложены французским физиологом Этьеном-Жюлем Маре.

Важнейшей деталью механических динамометров является пружина, которая должна работать в области линейной деформации. Это означает, что измеряемая сила прямо пропорциональна удлинению пружины. При измерениях в спорте очень часто применяются кистевые и становые (рис. 4.2) динамометры. Так, например, для измерения силы тяги в пауэрлифтинге используется становой динамометр. Диапазон измерений составляет от 100 Н до1800 Н с погрешностью +/-2 % по всей шкале. Вес 1.8 кг, размер 25,4х6,35 см. Ручка из прочного алюминия с удобным местом для захвата.

Становой динамометр
Рис.4.2. Становой динамометр

Недостатком механических динамометров является оценка одного, чаще всего максимального значения силы. В связи с этим, если необходимо изучить изменение усилия, развиваемого мышечной группой или спортсменом, применяются электронные динамометры. В этом случае датчиком является не пружина, а тензодатчик, а сама методика называется тензодинамометрия.

Метод тензодинамометрии позволяет зарегистрировать усилия, развиваемые спортсменом при выполнении различных физических упражнений.

В процессе выполнения спортивных движений спортсмен оказывает механическое воздействие на самые разнообразные предметы: спортивный снаряд, пол, дорожку, которые в результате этого деформируются. Для того, чтобы измерить значения развиваемых спортсменом усилий, используют специальные тензодатчики, преобразующие механическую деформацию в электрический сигнал. В основе работы тензодатчиков лежит тензоэффект. Суть тензоэффекта – изменение сопротивления проводника при его удлинении.

Тензодатчик представляет собой заклеенную между двумя полосками бумаги проволоку диаметром 0.02-0,05 мм. Он наклеивается на упругий элемент, воспринимающий усилие, задаваемое спортсменом.

В 1938 году были разработаны первые тензодатчики, которые работали на основе тензоэффекта. В 1947 году тензометрия впервые стала применяться в физических исследованиях

В спорте впервые в 1954 году М.П. Михайлюк закрепил тензодатчик на грифе штанги, П.И. Никифоров (1957) разработал тензоплатформу для записи усилий при отталкивании в прыжках в высоту. В 1963 году В.К. Бальсевич использовал тензодинамометрические стельки для анализа бега спринтеров различной квалификации. Им было установлено несколько типов отталкивания.

Методика тензодинамометрии активно применяется в тяжелой атлетике. Одна из ключевых задач тренера заключается в предоставлении информации об ошибках, то есть обратная связь от тренера к спортсмену. Обратная связь является важным элементом обучения. Спортсмен должен получать на регулярной основе информацию, которая позволяет сравнить собственную деятельность с идеалом или моделью. В результате такого сравнения, спортсмен получит знания о своей деятельности и имеет возможность работать на исправление своих ошибок.

Такая методика разработана А.Н. Фураевым (1988) и модернизирована И.П. Кожекиным (1998). Автоматизированный стенд включает в себя тензодинамометрическую платформу, АЦП (аналого-цифровой преобразователь) и компьютер. В экспертной системе компьютера заложены образцы, характеризующие правильное и неправильное выполнение двигательного действия (рывка, прыжка вверх и прыжка в глубину. Сопоставляя полученные результаты, экспертная система, построенная на анализе тензодинамограммы, позволяет спортсмену в реальном масштабе времени получить информацию об ошибках в технике двигательного действия и ввести корректировки чтобы их устранить.

4.6. Акселерометрия

Акселерометрия – биомеханический метод регистрации ускорения тела спортсмена, или его отдельных частей, а также ускорений спортивных снарядов. Например, в тяжелой атлетике информативным показателем техники движений спортсмена является ускорение центра масс штанги.

В качестве датчиков используются специальные акселерометры. Принцип действия датчика-акселерометра следующий. К исследуемому объекту прикрепляется масса при помощи связи, обладающей определенной жесткостью. Затем на основе известной массы и жесткости связи определяется ускорение. Основными характеристиками акселерометров являются диапазон и предельная частота изменения измеряемых ускорений.

Если используется трехкомпонентный акселерометр, можно зарегистрировать три составляющих ускорения. Выполняя дифференцирование полученного сигнала, можно рассчитать скорость и перемещение спортивного снаряда, например, грифа штанги. Используя трехкомпонентный акселерометрический датчик А.В.Самсонова с соавт. (2015) зарегистрировали ускорение головы спортсмена при выполнении силовых приемов в хоккее с шайбой.

4.7. Электромиография

4.7.1. Определение электромиографии

Электромиография – способ регистрации и анализа биоэлектрической активности мышц.

Суть явления заключается в регистрации электрических потенциалов мышц, которые появляются при возбуждении мышцы. А именно, когда вдоль мышечных волокон распространяется потенциал действия. Таким образом, электромиография, является надежным методом регистрации активности мышц. То есть на основе регистрации электрической активности мышц можно судить, когда мышца активна, и когда она пассивна. Зарегистрированные электрические потенциалы мышцы называют электромиограммой (ЭМГ).

4.7.2. Параметры ЭМГ

Чаще всего регистрируются следующие параметры ЭМГ: длительность электрической активности мышц, частота биопотенциалов, амплитуда биопотенциалов и суммарная электрическая активность мышц.

Длительность электрической активности мышц характеризует время, в течение которого мышца была возбуждена.

Частота и амплитуда биопотенциалов мышцы характеризуют степень возбуждения мышцы и характер активности различных ДЕ.

Суммарная электрическая активность мышц дает представление об общем уровне напряжения и силы развиваемой мышцей. Чем больше суммарная электрическая активность, тем больше степень напряжения, развиваемая мышцей.

4.7.3. Аппаратура для регистрации электрической активности мышц

Датчиками, используемыми для регистрации электрической активности, служат серебряные электроды, выполненные в виде небольших кружков (чашечек). Их диаметр составляет не более 10 мм. Внутри этих чашечек для лучшей электропроводности помещается специальная электропроводящая паста. В настоящее время регистрирующим прибором является персональный компьютер, рис.4.3.

Электромиографическая аппаратура
Рис.4.3. Электромиографическая аппаратура

4.7.4. Применение электромиографии в области атлетизма

Одной из первых работ, в которой электромиографическая методика применялась в исследовании двигательных действий штангиста, следует признать диссертационную работу А.С. Степанова (1957). В этом исследовании А.С. Степанов (1957) подверг детальному электромиографическому анализу основные соревновательные упражнения штангистов: толчок, рывок и жим.

В исследовании С.С. Лапенкова (1985) был проведен биомеханический анализ тяжелоатлетических и вспомогательных упражнений с использованием методики электромиографии. При сравнительном анализе движений использовались следующие характеристики ЭМГ: время электрической активности мышцы, которое характеризует длительность приложения усилий, развиваемых мышцами, средняя амплитуда ЭМГ, которая взаимосвязана с уровнем развития мышечных усилий. Использование ЭМГ методики и структурного метода распознавания образов позволило оценить эффективность вспомогательных упражнений.

За рубежом серьезные исследования силовых упражнений с применением электромиографической методики были предприняты R.F. Escamilla et al. (2001). Подробному электромиографическому и биомеханическому анализу были подвергнуты приседание со штангой на плечах и жим ногами лежа (рис. 4.4).

ЭМГ-регистрация силового упражнения жим лежа с верхней и нижней расстановкой стоп (R.F. Escamilla et al., 2001)
Рис.4.4. ЭМГ-регистрация силового упражнения жим лежа с верхней и нижней расстановкой стоп (R.F. Escamilla et al., 2001)

Было установлено, что при выполнении приседания активность четырехглавой мышцы бедра и мышц задней поверхности бедра выше, чем при выполнении жима ногами. При этом приседание, выполняемое с узкой расстановкой стоп, вызывает большую электрическую активность икроножной мышцы по сравнению с широкой расстановкой стоп.

Был проведен также анализ работы мышц при выполнении силовых упражнений: приседания со штангой на плечах (Н.Б. Кичайкина, А.В. Самсонова, Г.А. Самсонов, 2011). Установлено, что в нижней точке (НТ) электрическая активность большой ягодичной мышцы и мышц-разгибателей бедра (двуглавой бедра и полусухожильной) минимальна.

А.В. Самсонова (2010) изучала особенности электрической активности мышц нижних конечностей при выполнении силовых упражнений. Полученные результаты свидетельствуют о том, что при выполнении силового упражнения увеличение массы внешнего отягощения приводит к уменьшению доли суммарной электрической активности четырехглавой мышцы бедра, соответствующей эксцентрическому режиму. При выполнении силовых упражнений в «отказном цикле» значительно увеличивается длительность и амплитуда электрической активности широкой латеральной мышцы бедра рис.4.5.

Суммарная электрическая активность m. vastus lateralis при выполнении 2, 3 и 4 стандартных циклов (А) и отказного цикла (Б) силового упражнения с отягощением в 40% от 1ПМ. Вертикальные линии соответствуют началу цикла (А.В.Самсонова, Е.А.Косьмина, 2011)
Рис. 4.5. Суммарная электрическая активность m. vastus lateralis при выполнении 2, 3 и 4 стандартных циклов (А) и отказного цикла (Б) силового упражнения с отягощением в 40% от 1ПМ. Вертикальные линии соответствуют началу цикла (А.В.Самсонова, Е.А.Косьмина, 2011)

Рис. 4.5. Суммарная электрическая активность m. vastus lateralis при выполнении 2, 3 и 4 стандартных циклов (А) и отказного цикла (Б) силового упражнения с отягощением в 40% от 1ПМ. Вертикальные линии соответствуют началу цикла (А.В.Самсонова, Е.А.Косьмина, 2011)

4.7.5. Достоинства и недостатки ЭМГ

Положительной особенностью электромиографии являлось то, что она позволяла в разных движениях оценить степень активности скелетных мышц. С этой целью чаще всего применяется изучение суммарной электрической активности мышцы. Кроме того, появилась возможность оценить последовательность активности мышц при выполнении двигательного действия.

Однако электромиографическая методика не позволяет сопоставить напряжение, развиваемое разными мышцами спортсмена при выполнении силового упражнения. То есть количественно оценить, какая мышца проявляет большее или меньшее усилие. Это связано с тем, что на уровень силы, оцениваемой по ЭМГ, влияет ряд технических факторов, а именно, качество наклейки электродов, сопротивление кожи, степень усиления и т.д. Поэтому только на основе регистрации электрической активности мышц при выполнении силового упражнения очень сложно сопоставить «вклад» каждой мышцы в результат, тем не менее, электромиографическая методика остается до настоящего времени наиболее адекватной для решения этих проблем.

Литература

  1. Бегун П.И., Самсонова А.В. Биомеханика опорно-двигательного аппарата человека.- СПб: Кинетика, 2020.- 179 с.
  2. Биленко А.Г., Говорков Л.П., Ципин Л.Л. Измерения в биомеханике физических упражнений. Практический курс: Учебное пособие /А.Г. Биленко, Л.П. Говорков, Л.Л. Ципин /НГУ физической культуры, спорта и здоровья им. П.Ф. Лесгафта, 2010.– 166 с.
  3. Биомеханические методы исследования в спорте: Учебное пособие /Под ред. Г.П. Ивановой.– Ленинград, 1976.– 96 с.
  4. Кичайкина, Н.Б. Периферические механизмы организации движения в изучении техники приседания со штангой в пауэрлифтинге /Н.Б. Кичайкина, А.В. Самсонова, Г.А. Самсонов //Труды кафедры биомеханики Университета им. П.Ф. Лесгафта.- Вып. 5.– СПб, 2011.- С. 42-65.
  5. Кожекин И.П. Совершенствование двигательных действий тяжелоатлетов методом управления их биомеханической структурой: 13.00.04: Автореф. дис. . канд. пед. наук / Кожекин Игорь Петрович. – Малаховка: МОГИФК, 1998. — 19 с.
  6. Попов Г.И., Самсонова А.В. Биомеханика двигательной деятельности /Учебник для студентов учреждений высшего проф. Образования /Г.И. Попов. А.В. Самсонова.– М.: Академия, 2011.– 320 с.
  7. Самсонова, А.В. История биомеханики /А.В. Самсонова // Труды кафедры биомеханики: Междисциплинарный сборник статей /НГУ им.  П.Ф. Лесгафта, Санкт-Петербург; сост. А.В. Самсонова, С.А. Пронин.- СПб.: Из-во «Олимп», 2009.– Вып.2.– С. 4-15.
  8. Самсонова А.В. Характеристика суммарной электрической активности мышц при выполнении силовых упражнений //Вiсник Чернiгiвського державного педагогiчного унiверситету. Випуск 81. Серiя: Педагогiчнi науки. Фiзичне виховання та спорт.- Чернiгiв, 2010.- 427-431.
  9. Самсонова, А.В. Срочные тренировочные эффекты воздействия силовых упражнений методом до «отказа» на скелетные мышцы человека / А.В. Самсонова, Е.А. Косьмина //Вiсник Чернiгiвського державного педагогiчного унiверситету. Випуск 91. Том 1 Серiя: Педагогiчнi науки. Фiзичне виховання та спорт.- Чернiгiв, 2011.– 407-410.
  10. Самсонова, А.В. Ускорение головы спортсмена при выполнении силовых приемов в хоккее с шайбой / А.В.Самсонова, Л.В.Михно, Л.Л.Ципин, Г.А.Самсонов, И.А.Чичелов // Российский журнал биомеханики, 2015.- Т.19.- № 3.- С. 307-315.
  11. Фураев А.Н. Оперативное регулирование тренировочного процесса тяжелоатлетов с использованием автоматизированной системы контроля биомеханических параметров.: Автореф. дис… канд. пед. наук / А.Н. Фураев.– М.: Малаховка: 1988.–23 с.
  12. Escamilla, R.F. Effects of technique variations on knee biomechanics during the squat and leg press / R.F. Escamilla, G.S. Fleisig, N. Zheng, J.E. Lander, S.W. Barrentine, J.R. Andrews, B.W. Bergemann, C.T. Moorman III //Med. Sci Sports Exerc., 2001.– V.33.– N. 9.– P. 1552-1566.