ТИПЫ МЫШЕЧНЫХ ВОЛОКОН И МАКСИМАЛЬНАЯ СКОРОСТЬ УКОРОЧЕНИЯ МЫШЦ ПЛЕЧА ЧЕЛОВЕКА

Fiber Type Composition and Maximum Shortening Velocity of Muscles Crossing the Human Shoulder / R. C. Srinivasan, M. P. Lungren, J. E. Langenderfer & R. E. Hughes // Clinical Anatomy. 2007. V. 20. P. 144–149.

 

ТИПЫ МЫШЕЧНЫХ ВОЛОКОН И МАКСИМАЛЬНАЯ СКОРОСТЬ УКОРОЧЕНИЯ МЫШЦ ПЛЕЧА ЧЕЛОВЕКА

 

ABSTRACT

 

A study of the fiber type composition of fourteen muscles spanning the human glenohumeral joint was carried out with the purpose of determining the contribution of fiber types to overall muscle cross-sectional area (CSA) and to estimate the maximum shortening velocity (Vmax) of those muscles. Muscle biopsies were procured from 4 male cadavers (mean age 50) within 24 hr of death, snap frozen, mounted, and transversely sectioned (10 lm). Slides were stained for myofibrillar ATPase after alkaline preincubation. Photoimages were taken of defined areas (100 fibers) using the Bioquant system, and fiber type and CSA were measured from these images. Staining for mATPase produced three different fiber types: slow-oxidative (SO), fast-oxidative-glycolytic (FOG), and fast-glycolytic (FG). On average, the muscle fiber type composition ranged from 22 to 40% of FG, from 17 to 51% of FOG, and from 23 to 56% of SO. Twelve out of the 14 muscles had average SO proportions ranging from 35 to 50%. Vmax was calculated from the fiber type contribution relative to CSA and shortening velocity values taken from the literature. The maximum velocities of shortening presented here provide a physiological basis for the development of human shoulder musculoskeletal models suitable for predicting muscle forces for functionally relevant tasks encompassing conditions of muscle shortening and lengthening.

 

Key words: shoulder; elbow; muscle architecture; fiber type

 

АННОТАЦИЯ

 

Изучение композиции волокон четырнадцати мышц плечевого сустава человека было проведено с целью определения вклада волокон разных типов мышечных волокон (МВ) в площадь поперечного сечения (CSA) мышцы и с целью оценки максимальной скорости укорочения (Vmax) этих мышц. Мышечная биопсии были взята из трупов четырех мужчин (средний возраст 50) в течение 24 часов после смерти. Образцы замораживали и разрезали на тонкие слои (10 мкм). Слайды окрашивали для определения активности миофибриллярной АТФазы после щелочной преинкубации. В определенных областях выполнялись фотоснимки (100 волокон), используя систему Bioquant. На этих изображениях определялся тип волокна и площадь поперечного сечения МВ. По типу окрашивания определялись три типа МВ: медленные, окислительные типа I (SО), быстрые окислительно-гликолитические типа IIA (FOG), и быстрые гликолитические типа IIB (FG). В среднем, состав мышечных волокон колеблется от 22 до 40% FG, от 17 до 51% (FOG), и от 23 до 56% (SО).  Двенадцать из 14 мышц имели в среднием содержание медленных МВ типа I (SО)  в пределах от 35 до 50%. Vmax рассчитывали из вклада типа волокна по отношению к CSA и значений скорости сокращения, взятых из литературы. Максимальные скорости укорочения, представленные в этой статье, обеспечивают физиологическую основу для развития человеческого плеча, моделей опорно-двигательного аппарата, пригодных для прогнозирования мышечной силы при сокращении и удлинении мышц.

 

КЛЮЧЕВЫЕ СЛОВА: плечо, локоть, архитектура мышц, тип мышечных волокон

 

REFERENCES

 

  1. Bamman MM, Clarke MSF, Feeback DL, Talmadge RJ, Stevens BR, Lieberman SA, Greenisen MC. 1998. Impact of resistance exercise during bed rest on skeletal muscle sarcopenia and myosin isoform distribution. J Appl Physiol 84:157–163.
  2. Baґraґny M. 1967. ATPase activity of myosin correlated with speed of muscle shortening. J Gen Physiol 50(Suppl):197–218.
  3. Burke RE. 1981. Motor Units: Anatomy, Physiology, and Functional Organization. In: Brookhart JM, Mountcastle VB, Brooks VB, Geiger SR, editors. Handbook of Physiology. Bethesda, MD: American Physiological Society. p 345–422.
  4. Cheng EJ, Brown IE, Loeb GE. 2000. Virtual muscle: A computational approach to understanding the effects of muscle properties on motor control. J Neurosci Methods 101:117–130.
  5. Delp SL, Loan JP. 1995. A graphics-based software system to develop and analyze models of musculoskeletal structures. Comput Biol Med 25:21–34.
  6. Fitts RH, Costill DL, Gardetto PR. 1989. Effect of swim exercise training on human muscle fiber function. J Appl Physiol 66:465–475.
  7. Gansen H-K, Irlenbusch U. 2002. Neuromuscular failure of the rotator cuff as a contribution to the functional impingement of the shoulder—A muscle biopsy investigation. Z Orthop Ihre Grenzgeb 140:65–71.
  8. Guth L, Samaha FJ. 1970. Procedure for the histochemical demonstration of actomyosin ATPase. Exp Neurol 28:365–367.
  9. Happee R, Van der Helm FCT. 1995. The control of shoulder muscles during goal directed movements, an inverse dynamic analysis. J Biomech 28:1179–1191.
  10. Hatze H. 1978. A general myocybernetic control model of skeletal muscle. Biol Cybern 28:143–157.
  11. Hatze H. 1981. Estimation of myodynamic parameter values from observations on isometrically contracting muscle groups. Eur J Appl Physiol Occup Physiol 46:325–338.
  12. Jennekens FGI, Tomlinson BE, Walton JN. 1971. Data on the distribution of fibre types in five human limb muscles. J Neurol Sci 14:245–257.
  13. Johnson MA, Polgar J, Weightman D, Appleton D. 1973. Data on the distribution of fibre types in thirty-six human muscles. An autopsy study. J Neurol Sci 18:111–129.
  14. Jozsa L, Demel Z, Vandor E, Reffy A, Szilagyi I. 1978. Specific fibre composition of human hand and arm muscles. Handchirurgie 10:153–157.
  15. Jurimae J, Abernethy PJ, Blake K, McEniery MT. 1996. Changes in the myosin heavy chain isoform profile of the triceps brachii muscle following 12 weeks of resistance training. Eur J Appl Physiol Occup Physiol 74:287–292.
  16. Kaufman KR, An KN, Litchy WJ, Chao EYS. 1991. Physiological prediction of muscle forces. I. Theoretical formulation. Neuroscience 40:781–792.
  17. Klitgaard H, Zhou M, Schiaffino S, Betto R, Salviaiti G, Saltin B. 1990. Ageing alters the myosin heavy chain composition of single fibers from human skeletal muscle. Acta Physiol Scand 140:55–62.
  18. Langenderfer J, LaScalza S, Mell A, Carpenter JE, Kuhn JE, Hughes RE. 2005. An EMG-driven model of the upper extremity and estimation of long head biceps force. Comput Biol Med 35:25–39.
  19. Larsson L, Moss RL. 1993. Maximum velocity of shortening in relation to myosin isoform composition in single fibres from human skeletal muscles. J Physiol 472:595–614.
  20. Larsson L, Li X, Frontera WR. 1997. Effects of aging on shortening velocity and myosin isoform composition in single human skeletal muscle cells. Am J Physiol 272:C638–C649.
  21. Manal K, Gonzalez RV, Lloyd DG, Buchanan TS. 2002. A real-time EMG-driven virtual arm. Comput Biol Med 32:25–36.
  22. McGill SM, Norman RW. 1986. Partitioning of the L4-L5 dynamic moment into disc, ligamentous, and muscular components during lifting. Spine 11:666–678.
  23. McIntosh JS, Ringqvist M, Schmidt EM. 1985. Fiber type composition of monkey forearmmuscle. Anat Rec 211:403–409.
  24. Pandy MG, Garner BA, Anderson FC. 1995. Optimal control of nonballistic muscular movements: A constraint-based performance criterion for rising from a chair. J Biomech Eng 117:15–25.
  25. Portney LG, Watkins MP. 1993. Foundations of Clinical Research: Applications to Practice. Norwalk, CT: Appleton and Lang.
  26. Richmond FJR, Singh K, Corneil BD. 1999. Marked non-uniformity of fiber-type composition in the primate suboccipital muscle obliquus capitis inferior. Exp Brain Res 125:14–18.
  27. Scott SH, Brown IE, Loeb GE. 1996. Mechanics of feline soleus. I. Effect of fascicle length and velocity on force output. J Muscle Res Cell Motil 17:207–219.
  28. Scott W, Stevens J, Binder-Macleod SA. 2001. Human skeletal muscle fiber type classifications. Phys Ther 81:1810–1816.
  29. Singh K, Melis EH, Richmond FJR, Scott SH. 2002. Morphometry of Macaca mulatta forelimb. II. Fiber-type composition in shoulder and elbow muscles. J Morphol 251:323–332.
  30. Smerdu V, Karsch-Mizrachi I, Campione M, Leinwand L, Schiaffino S. 1994. Type IIx myosin heavy chain transcripts are expressed in type IIb fibers of human skeletal muscle. Am J Physiol 267:C1723–C1728.
  31. Soechting JF, Flanders M. 1997. Evaluating an integrated musculoskeletal model of the human arm. J Biomech Eng 119:93–102.
  32. Spector SA, Gardiner PF, Zernicke RF, Roy RR, Edgerton VR. 1980. Muscle architecture and force-velocity characteristics of cat soleus and medial gastrocnemius: Implications for motor control. J Neurophysiol 44:951–960.
  33. Thelen DG. 2003. Adjustment of muscle mechanics model parameters to simulate dynamic contractions in older adults. J Biomech Eng 125:70–77.
  34. Thelen DG, Anderson FC, Delp SL. 2003. Generating dynamic simulations of movement using computed muscle control. J Biomech 36:321–328.
  35. Thorstensson A, Grimby G, Karlsson J. 1976. Force-velocity relations and fiber composition in human knee extensor muscles. J Appl Physiol 40:12–16.
  36. Trappe S, Costill D, Thomas R. 2000. Effect of swim taper on whole muscle and single fiber contractile properties. Med Sci Sports Exerc 33:48–56.
  37. Zajac FE. 1989. Muscle and tendon: Properties, models, scaling, and application to biomechanics and motor control. Crit Rev Biomed Eng 17:359–411