Точечное и интервальное оценивание числовых характеристик

Видеоуроки по Statgraphics Учебные пособия по статистике Введение в математическую статистику Генеральная совокупность и выборка Статистические шкалы Эмпирические распределения Числовые характеристики выборки Стандартная ошибка среднего арифметического Представление результатов исследования Точечное и интервальное оценивание числовых характеристик Элементы теории вероятностей Нормальный закон распределения (закон нормального распределения) Статистические гипотезы Критерии проверки статистических гипотез Критерии согласия Условия применения параметрических критериев Обоснование выбора критерия значимости Статистические операции в номинальной шкале Представление данных статистического анализа Корреляционный анализ Представление данных корреляционного анализа Регрессионный анализ Представление результатов регрессионного анализа

Доверительный интервал генерального среднего

Точечное и интервальное оценивание числовых характеристик выборки

Точечной оценкой числовой характеристики выборки называют оценку, которая определяется одним числом. К точечным оценкам относятся: среднее арифметическое, дисперсия или стандартное отклонение.

Например, статистическая обработка результатов 50 спортсменов в беге показал, что среднее арифметическое времени пробегания 100 м равно 15,38 с. Это число является точечной оценкой среднего арифметического.

Если выборка небольшого объёма, то точечная оценка может значительно отличаться от оцениваемого параметра генеральной совокупности, в данном случае от среднего арифметического генеральной совокупности (обозначается μ) и её использование может привести к грубым ошибкам. Поэтому при небольшом объёме выборки в математической статистике используют другого типа оценки характеристик генеральной совокупности – интервальные.

Интервальной оценкой числовой характеристики называется интервал[1], который с доверительной вероятностью P (задаваемой заранее) накрывает истинное значение числовой характеристики генеральной совокупности.

Как правило, в научных исследованиях в области физической культуры и спорта считается достаточной доверительная вероятность Р=0,95. В некоторых случаях, связанных с большой ответственностью при принятии решений, принимают P равной 0,99 или 0,999. Таким образом, доверительная вероятность – это уровень гарантии суждения о значениях генеральной характеристики на основании выборочных данных.

Вероятность α=1-Р того, что построенный доверительный интервал не накроет значение генеральной характеристики, называется уровнем значимости; другими словами, α — вероятность ошибки.

В литературе часто обе вероятности α и P выражают в процентах, т.е. 100α% и 100P%.

Для определения доверительного интервала необходимо знать значение параметра t. Он зависит от объема выборки (n) и доверительной вероятности P (таблица 1).

Таблица 1 — Значения t в зависимости от объёма выборки и доверительной вероятности Р.

 

n

Р
0,950,990,999
102,2653,2504,781
152,1452,9774,140
202,0932,8613,883
302,0422,7503,646
402,0212,7043,551
502,0092,6783,505
602,0002,6603,505
801,9902,6393,416

Покажем на примере, как определить границы 95% доверительного интервала для среднего результата в беге на 100 м (n = 50), если: среднее арифметическое равно 15,38 с, а стандартная ошибка среднего арифметического равна 0,13 с.

Из таблицы 1 для n = 50 и P= 0,95 находим значение t. Оно равно t=2,009. Следовательно, доверительный интервал будет следующим: 15,38 — 2,009·0,13<μ<15,38+2,009·0,13

или 15,12<μ<15,64 с

После округления получим итоговый результат: 15,1<μ<15,6 c

Таким образом, с доверительной вероятностью  Р=0,95 можно утверждать, что генеральное среднее μ заключено в границах от 15,1 до 15,6 с.

Если мы хотим с большей вероятность (например, Р=0,99) утверждать, что генеральное среднее заключено в определенном интервале, необходимо из таблицы 1 найти значение t для n = 50 и P= 0,99. Оно равно t=2,678.

Тогда доверительный интервал для генерального среднего арифметического будет следующим:

15,38 — 2,678·0,13<μ<15,38+2,678·0,13

или 15,03<μ<15,73 с.

После округления получим итоговый результат: 15,0<μ<15,7 c.

Таким образом, с доверительной вероятностью  Р=0,99 можно утверждать, что генеральное среднее μ заключено в границах от 15,0 до 15,7 с. То есть утверждение с большей вероятностью увеличивает интервал, в котором заключено генеральное среднее арифметическое.

Литература

Самсонова, А.В. Математическая статистика в спортивных исследованиях: учебное пособие / А.В. Самсонова, И.Э. Барникова: НГУ им.П.Ф.Лесгафта, Санкт-Петербург.- СПб [б.и.], 2022.- 122 c.

С уважением, А.В. Самсонова

[1] Интервал – множество всех чисел, удовлетворяющих строгому неравенству a < x < b

  1. Учебные пособия по статистике
  2. Видеоуроки по Statgraphics
  3. Введение в математическую статистику
  4. Генеральная совокупность и выборка
  5. Статистические шкалы
  6. Эмпирические распределения
  7. Числовые характеристики выборки
  8. Стандартная ошибка среднего арифметического
  9. Представление результатов исследования
  10. Точечное и интервальное оценивание числовых характеристик
  11. Элементы теории вероятностей
  12. Нормальный закон распределения (закон нормального распределения)
  13. Статистические гипотезы
  14. Критерии проверки статистических гипотез
  15. Критерии согласия
  16. Условия применения параметрических критериев
  17. Обоснование выбора критерия значимости
  18. Статистические операции в номинальной шкале
  19. Представление данных статистического анализа
  20. Корреляционный анализ
  21. Представление данных корреляционного анализа
  22. Регрессионный анализ
  23. Представление результатов регрессионного анализа