Anatomical Data for Biomechanical Calculation

Статья I.M.Kozlov, A.V.Samsonova, A.B.Sinuchin Anatomical Data for Biomechanical Calculation посвящена определению констант, характеризующих прикрепление мышц нижних конечностей  к звеньям ОДА, которые необходимы для расчета длины и плеч силы мышц при выполнении двигательных действий человека. Для определения констант были выполнены измерения на трупном материале мужчин (n=23) и женщин (n=20) в возрасте от 25 до 45 лет. Получены уравнения регрессии, связывающие длину звеньев тела и значения констант. Полученные анатомические данные могут быть использованы в биомеханических исследованиях при расчете текущей длины и скорости сокращения мышц, что очень важно для исследования спортивных движений.

проведение эксперимента по исследованию жима штанги лежа

Kozlov, I.M. Anatomical Data for Biomechanical calculation /I.M. Kozlov, A.V. Samsonova, A.B. Sinukhin //Current Research in Sport Sciences /Ed. Rogozkin and Maughan: Plenum Press.– NewYork, 1996.– P. 117-121.

I.M. Kozlov, A.V. Samsonova, A.B. Sinukhin

ANATOMICAL DATA FOR BIOMECHANICAL CALCULATION

INTRODUCTION

The human locomotor System has two main functions: moving and sensor (proprioreceptor). Both are necessary for muscle activity regulation. Knowledge about muscle morphometric characteristics (length and force arm) during motion allows analysis of: 1) regimes of muscle contraction; 2) the most effective zones of force suppling; 3) data about muscle speed ability.

There are many methods of determining muscle morphometric characteristics. They may be divided into two groups; direct measure methods and simulating. Each of these methods have positive and negative aspects. However, simulating allows more meaningful information to be obtained about the changes in muscle morphometric characteristics during movement (Kozlov et al, 1988). Therefore, it is necessary to have data about joint angles and parameters of distance between a joint centre of rotation and points of muscle attachment to bones. Determination of Joint angle data may be performed with a variety of well know methods (cinematography, ciclo or video). Despite changes in joint angles during movement, parameters which characterize distance between centres of rotation and points of muscle attachment don’t change. These parameters are constant and depend on the individuals characteristics. In the literature describing skeletal and muscle anatomy there are only qualitative descriptions of muscle attachment characteristics (Ivanizkij, 1938; Sinelnikov, 1972). There is not enough data about these constant parameters, and some of literature has drawbacks: 1) sexual differences have not been taken into account; 2) subject numbers are low; 3) no examination of the relationship between anthropological characteristics of the human locomotor system and the constant parameters has been made (Kozlov and Zvenigorodskaja, 1981).

The task of this research was to quantify the numerical constants which characterize distance between centre of joint rotation and point of muscle attachment to bone and to determine the relationship between these parameters and the anthropological characteristics of the human locomotor system.

METHOD

For calculation of length and force production on human leg muscles is necessary to have data of 17 constants (figure 1).

Models of Human leg's muscles
Fig. 1. Models of Human leg’s muscles

All the constants may be divided in two parts. The first group constants: a, d, e, k, l, n, p, R1, R3 may be measured just on the subject’s body or the photo (N=8). The second group constants: b, c, f, m, r, R2, u, and t may be measured on cadavers. For the determination of second group constants male (N=23) and female (N=20) cadavers were measured with an age range of 25- to 45 years. The centre of joint rotation and point of a muscle attachment were marked. For the distance from points of muscle attachment and the centre of joint rotation measurements were made using Martin’s anthropometer (error of measurement was 0.05 sm). If the place of muscle attachment was not precisely defined, such as with m. tibialis anterior on the tibia, the most distant point (D) and proximal point (P) of muscle attachment were determinated. Numerical constants b,c,f,m, were calculated by the following formula.

Const=(X1-X2)/2 +X1 (1),

where X1 – distance from the joint’s centre rotation to the point P, X2 — distance from the joint’s centre rotation to the point D.

RESULTS

To examine the numeral means of the constants and anthropological characteristics of the human locomotor system a correlation analysis was used (r-Brave-Pearson correlation coefficient) there was a weak correlation between the numerical means of the constants b, c, f, u and R2, and the anthropological characteristics of the human locomotor system but there was a strong positive correlation between the means of constant m and femur length (n), Table 1.

Table 1. Correlation coefficients between characteristics of the human locomotor system and measured constants

Characteristics of the human locomotor system

Sex

Constants

b

c

f

m

R2

u

Crus length (e)

M

0.482

0.703

F

0.606

0.404

Femur length (n)

M

0.546

0.817

0.185

0.368

F

0.514

0.827

0.188

0.108

For constants b,c,f, t, u, and R2 that have weak correlations with anthropological characteristics a statistical value was calculated (Table 2).

Table 2. Mean values of constants which characterize distance from axes of rotation to points of muscle attachment, (sm)

Constants

Sex

Male

Female

b

21.7±0.6

20.3±1.0

c

23.5±0.8

21.0±1.0

f

16.2±1.0

15.5±0.8

r

2.9±1.0

2.3±0.8

R2

2.2±0.4

1.9±0.6

t

16.9±1.0

16.7±0.8

u

11.9±0.8

10.9±0.8

For constant m which has a strong positive correlation with femur length a regression equation was evaluated. A linear regression equation was calculated between the mean of m constant and femur length. Formulas which describe the relationship between mean value of m constant for men (2) and women (3) were obtained.

m= 0.560n + 0.654 (2)

m= 0.611n – 1.681 (3),

Where m – distance from knee joint center of rotation till point of m. vastus lateralis attachment to femur, sm; n – femur length, sm.

graphical representation of the relationship between m and femur length.
Figure 2 shows a graphical representation of the relationship between m and femur length.

CONCLUSION

Distances from points of muscle to centers of joint rotation were determined. Most of the constants had weak correlations with the anthropological characteristics of the human locomotor system. A regression equation was calculated to allow modeling of morphometric muscle characteristics during sport movements.

REFERENCES

  1. Ivanizkij M.F. 1938., Human body movements, Moscow.
  2. Kozlov I.M., Zvenigorodskaja A.V., 1981., Anatomic measurements data for muscle movements evaluation., In: Biomechanical factors of sport movement coordination, Leningrad, 70-92.
  3. Kozlov I.M., Samsonova A.V., Sokolov V.G., 1982., Morfometric characteristic of low limb muscles, In: Archive of anatomy, gystology, embryology, 94: 47-52.
  4. Sinelnikov R.D., 1972.,Atlas of human anatomy, Moskow.
1996_ Kozlov_Samsonova_Sinuchin_Current_Research.pdf

Похожие записи:


Масса тела
Введено понятие массы тела и единицы массы тела. Показано, как определяется масса тел на Земле и в космосе.

Биомеханика
Дано определение биомеханики, раскрыты направления биомеханики: медицинская (клиническая) биомеханика, эргономическая биомеханика, инженерная биомеханика и биомеханика двигательных действий человека.

Материальная точка (точечная масса)
Дано определение материальной точки (точечной массы, материальной частицы) . Приведены примеры из астрономии, механики и области физической культуры…

Отсроченное начало болезненности мышц. Стратегии лечения и факторы эффективности
Описаны симптомы, причины, теории отсроченного начала болезненности мышц (запаздывающих болезненных ощущений, DOMS), а также способы уменьшения этих болей:…

Срочные гормональные ответы у элитных тяжелоатлетов-юниоров
Изучалось изменение концентрации в крови: тестостерона, кортизола, гормона роста, бета-эндорфина и лактата у тяжелоатлетов-юниоров…

Метод «до отказа» для развития силовых способностей человека
В статье рассмотрено применение низко- средне- и высокоинтенсивного метода «до отказа» для развития силы, силовой выносливости и…