Трехмерный биомеханический анализ приседания со штангой на плечах выполняемого при различной ширине расстановки стоп

Выполнялся трехмерный биомеханический анализ приседания со штангой на плечах при различной ширине расстановки стоп. Рассчитывались межзвенные углы, моменты силы, развиваемые мышцами относительно тазобедренного, коленного и голеностопного суставов при различной расстановке стоп. 3D анализ значительно точнее, чем 2D, особенно для широкой стойки.

 

ESCAMILLA, R. F., G. S. FLEISIG, T. M. LOWRY, S. W. BARRENTINE, and J. R. ANDREWS. A three-dimensional biomechanical analysis of the squat during varying stance widths. Med. Sci. Sports Exerc., Vol. 33, No. 6, 2001, pp. 984–998.

Эскамилла Р.Ф. с соавт.

ТРЕХМЕРНЫЙ БИОМЕХАНИЧЕСКИЙ АНАЛИЗ ПРИСЕДАНИЯ СО ШТАНГОЙ НА ПЛЕЧАХ ВЫПОЛНЯЕМОГО ПРИ РАЗЛИЧНОЙ ШИРИНЕ РАССТАНОВКИ СТОП

ЦЕЛЬ

Рассчитать биомеханические параметры при приседании со штангой с различной шириной стоп, используя 2D и 3D методы анализа.

МЕТОДЫ

Во время национального чемпионата по пауэрлифтингу велась видеосьемка приседания со штангой на плечах 39 атлетов с частотой 60 кадров/с. Ширина между стопами была усреднена относительно ширины плеч, и было выделено три группы стоек:

  • Узкая (107+- 10% от ширины плеч).
  • Средняя (142+-12%).
  • Широкая (169+-12%).

РЕЗУЛЬТАТЫ

Наибольшие биомеханические различия среди трех видов стоек, а также при использовании 2D и 3D анализа наблюдаются между узкой и широкой стойками. При углах 45 и 90 градусов в коленном суставе, бедра сгибались больше на 6-11 градусов, и бедра были на 7-12 градусов ближе к горизонтальному положению в средней и широкой стойке в сравнении с узкой. При угле 90 градусов и в нижней точке приседа, голени были на 5-9 градусов ближе к вертикальному положению и стопы были развернуты наружу на 6 градусов больше в широкой стойке по сравнению с узкой. В положении туловища заметных различий не выявлено. Углы в тазобедренном суставе были на 3-13 градусов меньше при 2D анализе в сравнении с 3D.

Моменты силы, развиваемые мышцами в узкой стойке:

Сгибатели голеностопного сустава: – 10-51Нм;

Разгибатели голени – 359-573Нм;

Разгибатели бедра – 275-577Нм.

Моменты силы, развиваемые мышцами в средней и широкой стойке:

Сгибатели голеностопного сустава – 34-284Нм.

Разгибатели голени – 447-756Нм.

Разгибатели бедра – 382-628 Нм

При 2D и 3D анализе наблюдаются значительные различия в плечах моментов относительно голеностопного и коленного суставов: 7-9 см в узкой стойке, 12-14 в средней и 16-18 в широкой.

ВЫВОДЫ

Для узкой стойки были рассчитаны моменты для подошвенного сгибателя стопы, для средней и широкой стойки были рассчитаны моменты для тыльного сгибателя стопы. Моменты относительно коленного и тазобедренного суставов были больше в широкой стойке по сравнению с узкой. 3D анализ значительно точнее, чем 2D, особенно для широкой стойки.

КЛЮЧЕВЫЕ СЛОВА

Пауэрлифтинг, тяжелая атлетика, моменты силы относительно суставов, плечи силы относительно суставов, межзвенные углы, кинематика, кинетика, механическая работа

Purpose: The purpose of this study was to quantify biomechanical parameters employing two-dimensional (2-D) and three-dimensional (3-D) analyses while performing the squat with varying stance widths. Methods: Two 60-Hz cameras recorded 39 lifters during a national powerlifting championship. Stance width was normalized by shoulder width (SW), and three stance groups were defined: 1) narrow stance squat (NS), 107 6 10% SW; 2) medium stance squat (MS), 142 6 12% SW; and 3) wide stance squat (WS), 169 6 12% SW. Results: Most biomechanical differences among the three stance groups and between 2-D and 3-D analyses occurred between the NS and WS. Compared with the NS at 45° and 90° knee flexion angle (KF), the hips flexed 6–11° more and the thighs were 7–12° more horizontal during the MS and WS. Compared with the NS at 90° and maximum KF, the shanks were 5–9° more vertical and the feet were turned out 6° more during the WS. No significant differences occurred in trunk positions. Hip and thigh angles were 3–13° less in 2-D compared with 3-D analyses. Ankle plantar flexor (10–51 N·m), knee extensor (359–573 N·m), and hip extensor (275-577 N·m) net muscle moments were generated for the NS, whereas ankle dorsiflexor (34–284 N·m), knee extensor (447–756 N·m), and hip extensor (382-628 N·m) net muscle moments were generated for the MS and WS. Significant differences in ankle and knee moment arms between 2-D and 3-D analyses were 7–9 cm during the NS, 12–14 cm during the MS, and 16–18 cm during the WS. Conclusions: Ankle plantar flexor net muscle moments were generated during the NS, ankle dorsiflexor net muscle moments were produced during the MS and WS, and knee and hip moments were greater during the WS compared with the NS. A 3-D biomechanical analysis of the squat is more accurate than a 2-D biomechanical analysis, especially during the WS.

 Key Words:

POWERLIFTING, WEIGHTLIFTING, JOINT MOMENTS, JOINT MOMENT ARMS, JOINT ANGLES, SEGMENT ANGLES, KINEMATICS, KINETICS, MECHANICAL WORK

REFERENCES

  1. ANDREWS, J. G., J .G. HAY, and C. L. VAUGHAN. Knee shear forces during a squat exercise using a barbell and a weight machine. In: Biomechanics VIII-B, H. Matsui and K. Kobayashi (Eds.). Champaign, IL: Human Kinetics, 1983, pp. 923–927.
  2. ARIEL, B. G. Biomechanical analysis of the knee joint during deep knee bends with heavy loads. In: Biomechanics IV, R. Nelson and C. Morehouse (Eds.). Baltimore: University Park Press, 1974, pp. 44–52.
  3. BROWN, E. W., and K. ABANI. Kinematics and kinetics of the dead lift in adolescent power lifters. Med. Sci. Sports Exerc. 17:554– 566, 1985.
  4. BROWN, S. P., J. M. CLEMONS, Q. HE, and S. LIU. Prediction of the oxygen cost of the deadlift exercise. J. Sports Sci. 12:371–375, 1994.
  5. BYRD, R., K. PIERCE, R. GENTRY, and M. SWISHER. Predicting the caloric cost of the parallel back squat in women. J. Strength Cond. Res. 10:184 –185, 1996.
  6. DAHLKVIST, N. J., P. MAYO, and B. B. SEEDHOM. Forces during squatting and rising from a deep squat. Engl. Med. 11(2):69 –76, 1982.
  7. DEMPSTER, W. T. Space requirements of the seated operator (WADC Technical Report). Wright-Patterson Air Force Base, Ohio, 1955, pp. 55–159.
  8. ESCAMILLA, R. F., G. S. FLEISIG, N. ZHENG, S. W. BARRENTINE, K. E. WILK, and J. R. ANDREWS. Biomechanics of the knee during closed kinetic chain and open kinetic chain exercises. Med. Sci. Sports Exerc. 30:556 –569, 1998.
  9. ESCAMILLA, R. F., A. C. FRANCISCO, G. S. FLEISIG, et al. A threedimensional biomechanical analysis of sumo and conventional style deadlifts. Med. Sci. Sports Exerc. 32:1265–1275, 2000.
  10. ESCAMILLA, R. F., N. ZHENG, G. S. FLEISIG, et al. The effects of technique variations on knee biomechanics during the squat and leg press. Med. Sci. Sports Exerc. 29:S156, 1997.
  11. HATTIN, H. C., M. R. PIERRYNOWSKI, and K. A. BALL. Effect of load, cadence, and fatigue on tibio-femoral joint force during a half squat. Med. Sci. Sports Exerc. 21:613– 618, 1989.
  12. HAY, J. G., J. G. ANDREWS, C. L. VAUGHAN, and K. UEYA. Load, speed, and equipment effects in strength-training exercises. In: Biomechanics VIII-B, H. Masui and K. Kobayashi (Eds.). Champaign, IL: Human Kinetics Publishers, 1983, pp. 939–950.
  13. HERZOG, W., and L. J. READ. Lines of action and moment arms of the major force-carrying structures crossing the human knee joint. J. Anat. 182(Pt 2):213–230, 1993.
  14. ISEAR, J. A., Jr., J. C. ERICKSON, and T. W.WORRELL. EMG analysis of lower extremity muscle recruitment patterns during an unloaded squat. Med. Sci. Sports Exerc. 29:532–539, 1997.
  15. KELLIS, E., and V. BALTZOPOULOS. In vivo determination of the patella tendon and hamstrings moment arms in adult males using videofluoroscopy during submaximal knee extension and flexion. Clin. Biomech. 14:118 –124, 1999.
  16. LANDER, J. E., B. T. BATES, and P. DEVITA. Biomechanics of the squat exercise using a modified center of mass bar. Med. Sci. Sports Exerc. 18:469–478, 1986.
  17. LANDER, J. E., R. L. SIMONTON, and J. K. GIACOBBE. The effectiveness of weight-belts during the squat exercise. Med. Sci. Sports Exerc. 22:117–126, 1990.
  18. LIEBER, R. L., and J. L. BOAKES. Muscle force and moment arm contributions to torque production in frog hindlimb. Am. J. Physiol. 254(6 Pt 1):C769 –772,
  19. LIEBER, R. L., and C. G. BROWN. Sarcomere length-joint angle relationships of seven frog hindlimb muscles. Acta Anat. 145: 289–295, 1992.
  20. MCCAW, S. T., and D. R. MELROSE. Stance width and bar load effects on leg muscle activity during the parallel squat. Med. Sci. Sports Exerc. 31(3):428–436, 1999.
  21. MCLAUGHLIN, T. M., C. J. DILLMAN, and T. J. LARDNER. A kinematic model of performance in the parallel squat by champion powerlifters. Med. Sci. Sports Exerc. 9:128 –133, 1977.
  22. MCLAUGHLIN, T. M., T. J. LARDNER, and C. J. DILLMAN. Kinetics of the parallel squat. Res. Q. 49:175–189, 1978.
  23. NEMETH, G. On hip and lumbar biomechanics: a study of joint load and muscular activity. Scand. J. Rehabil. Med. Suppl. 10:1–35, 1984.
  24. NEMETH, G., and H. OHLSEN. In vivo moment arm lengths for hip extensor muscles at different angles of hip flexion. J. Biomech. 18:129 –140, 1985.
  25. NINOS, J. C., J. J. IRRGANG, R. BURDETT, and J. R. WEISS. Electromyographic analysis of the squat performed in self-selected lower extremity neutral rotation and 30 degrees of lower extremity turn-out from the self-selected neutral position. J. Orthop. Sports Phys. Ther. 25:307–315, 1997.
  26. NISELL, R., and J. EKHOLM. Joint load during the parallel squat in powerlifting and force analysis of in vivo bilateral quadriceps tendon rupture. Scand J. Sports Sci. 8:63–70, 1986.
  27. O’CONNOR, J. J. Can muscle co-contraction protect knee ligaments after injury or repair? J. Bone Joint Surg. (Br.) 75-B(1):41– 48, 1993.
  28. RUSSELL, P. J., and S. J. PHILLIPS. A preliminary comparison of front and back squat exercises. Res. Q. 60:201–208, 1989.
  29. SIGNORILE, J. F., K. KWIATKOWSKI, J. F. CARUSO, and B. ROBERTSON. Effect of foot position on the electromyographical activity of the superficial quadriceps muscles during the parallel squat and knee extension. J. Strength Cond. Res. 9:182–187, 1995.
  30. SIGNORILE, J. F., B. WEBER, B. ROLL, J. F. CARUSO, I. LOWENSTEYN, and A. C. PERRY. An electromyographical comparison of the squat and knee extension exercises. J. Strength Cond. Res. 8:178–183, 1994.
  31. STUART, M. J., D. A. MEGLAN, G. E. LUTZ, E. S. GROWNEY, and K. N. AN. Comparison of intersegmental tibiofemoral joint forces and muscle activity during various closed kinetic chain exercises. Am. J. Sports Med. 24:792–799, 1996.
  32. VISSER, J. J., J. E. HOOGKAMER, M. F. BOBBERT, and P. A. HUIJING. Length and moment arm of human leg muscles as a function of knee and hip-joint angles. Eur. J. Appl. Physiol. 61(5– 6):453– 460, 1990.
  33. WOOD, G. A., and R. N. MARSHALL. The accuracy of DLT extrapolation in three-dimensional film analysis. J. Biomech. 19:781– 785, 1986.
  34. WRETENBERG, P., Y. FENG, and U. P. ARBORELIUS. High-and lowbar squatting techniques during weight-training. Med. Sci. Sports Exerc. 28:218 –224, 1996.
  35. WRETENBERG, P., Y. FENG, F. LINDBERG, and U. P. ARBORELIUS. Joint moments of force and quadriceps activity during squatting exercise. Scand. J. Med. Sci. Sports. 3:244 –250, 1993.
  36. WRIGHT, G. A., T. H. DELONG, and G. GEHLSEN. Electromyographic activity of the hamstrings during performance of the leg curls, stiff-leg deadlift, and back squat movements. J. Strength Cond. Res. 13:168 –174, 1999.
  37. YACK, H. J., C. E. COLLINS, and T. J. WHIELDON. Comparison of closed and open kinetic chain exercise in the anterior cruciate ligament-deficient knee. Am. J. Sports Med. 21:49 –54, 1993.