Ф. Кади Эффект силовой тренировки и прекращения тренировки на клетки-сателлиты в скелетных мышцах человека

Kadi, F. The effects of heavy resistance training and detraining on satellite cells in human skeletal muscles / F. Kadi, P. Schjerling, L.L. Andersen, N. Charifi, J.L. Madsen, L.R. Christensen, J.L. Andersen // J. Physiol., 2004.– Vol. 558.– №3, pp. 1005–1012.

 

ЭФФЕКТ СИЛОВОЙ ТРЕНИРОВКИ И ПРЕКРАЩЕНИЯ ТРЕНИРОВКИ НА КЛЕТКИ-САТЕЛЛИТЫ В СКЕЛЕТНЫХ МЫШЦАХ ЧЕЛОВЕКА

 

 

ABSTRACT

 

Целью данного исследования было изучение изменения содержания клеток-сателлитов и количества миоядер после 30 и 90 дней тренировок с отягощениями и 3, 10, 30, 60 и 90 дней после прекращения тренировки. Биопсия была взята из латеральной широкой мышцы бедра 15 молодых людей (средний возраст: 24 года; диапазон: 20-32 лет). Клетки-сателлиты и миоядра изучали на сечениях мышечных волокон, окрашенных моноклональным антителом CD56 и контрастным окрашиванием гематоксилином Майера. Маркеры клеточного цикла CyclinD1 и уровень p21 иРНК определялся Northern blotting. Содержание клеток-сателлитов увеличилось на 19% (р = 0,02) в течение 30 дней и на 31% (р = 0,0003) в течение 90 дней тренировки. По сравнению с исходным уровнем до тренировки, количество клеток-сателлитов оставались значительно выше через 3, 10 и 60 дней после прекращения тренировки. К 90 дню прекращения тренировки оно достигло исходного уровня. Уровень двух маркеров клеточного цикла CyclinD1 и p21 мРНК, значительно вырос через 30 дней тренировки. На 90 день, p21 был еще повышенным, тогда как CyclinD1 вернулся к значениям до тренировки. В период прекращения тренировки, p21 и уровень CyclinD1 были близки к значениям до тренировки. Там не было никаких существенных изменений в количестве миоядер во время тренировки и периода прекращения тренировки. Площадь мышечного волокна, контролируемая одним миоядром, постепенно увеличивалась в течение всего периода тренировки и вернулась к исходному уровню в период прекращения тренировки. В заключение, эти результаты демонстрируют высокую пластичность клеток-сателлитов в ответ на тренировку и прекращение тренировки и ясно показывают, что умеренные изменения в размере скелетных мышечных волокон могут быть достигнуты без добавления новых миоядер.

 

The aim of this study was to investigate the modulation of satellite cell content and myonuclear number following 30 and90 days of resistance training and 3, 10, 30, 60 and 90 days of detraining. Muscle biopsies were obtained from the vastus lateralis of 15 young men (mean age: 24 years; range: 20–32 years). Satellite cells and myonuclei were studied on muscle crosssections stained with a monoclonal antibody against CD56 and counterstained with Mayer’s haematoxylin. Cell cyclemarkers CyclinD1 and p21 mRNA levels were determined by Northern blotting. Satellite cell content increased by 19% (P=0.02) at 30 days and by 31% (P=0.0003) at 90 days of training. Compared to pre-training values, the number of satellite cells remained significantly elevated at 3, 10 and 60 days but not at 90 days of detraining. The two cell cycle markers CyclinD1 and p21 mRNA significantly increased at 30 days of training. At 90 days of training, p21 was still elevated whereas CyclinD1 returned to pre-training values. In the detraining period, p21 and CyclinD1 levels were similar to the pre-training values. There were no significant alterations in the number of myonuclei following the training and the detraining periods. The fibre area controlled by each myonucleus gradually increased throughout the training period and returned to pre-training values during detraining. In conclusion, these results demonstrate the high plasticity of satellite cells in response to training and detraining stimuli and clearly show that moderate changes in the size of skeletal muscle fibres can be achieved without the addition of new myonuclei.

 

REFERENCES

 

  1. Adams GR (1998). Role of insulin-like growth factor-I in the regulation of skeletal muscle adaptation to increased loading. In Exercise and Sport Sciences Reviews, ed. Holloszy JO. Williams & Wilkins, Baltimore.
  2. Adams GR, Haddad F & Baldwin KM (1999). Time course of changes in markers of myogenesis in overloaded rat skeletal muscles. J Appl Physiol 87, 1705
  3. Allen DL, Monke SR, Talmadge RJ, Roy RR & Edgerton VR (1995). Plasticity of myonuclear number in hypertrophied and atrophied mammalian skeletal muscle fibers. J Appl Physiol 78, 1969
  4. Allen DL, Roy RR & Edgerton VR (1999). Myonuclear domains in muscle adaptation and disease. Muscle Nerve 22, 1350
  5. Andersen JL, Schjerling P, Andersen LL & Dela F (2003). Resistance training and insulin action in humans: effects of de-training. J Physiol 551, 1049
  6. Bischoff R (1994). The satellite cell and muscle regeneration. In Myology, 2nd edn, ed. Engel AG & Franzini-Armstrong C, pp. 97–117. McGraw-Hill, New York.
  7. Booth FW, Tseng BS, Fluck M & Carson JA (1998). Molecular and cellular adaptation of muscle in response to physical training. Acta Physiol Scand 162, 343
  8. Cabric M & James NT (1983). Morphometric analyses on the muscles of exercise trained and untrained dogs. Am J Anat 166, 359
  9. Carson JA, Schwartz R & Booth FW (1996). SRF and TEF-1 control of chicken skeletal α-actinin promoter in young chickens during hypertrophy caused by strech overload. Am J Physiol 268, C918–C924.
  10. Charifi N, Kadi F, Feasson L & Denis C (2003). Effects of endurance training on satellite cell frequency in skeletal muscle of old men. Muscle Nerve 28, 87
  11. Cheek DB (1985). The control of cell mass and replication. The DNA unit- a personal 20-year study. Early Hum Dev 12, 211
  12. Darr KC & Schultz E (1987). Exercise-induced satellite cell activation in growing and mature skeletal muscle. J Appl Physiol 63, 1816
  13. Edgerton VR & Roy RR (1991). Regulation of skeletal muscle fiber size, shape and function. J Biomech 24 (suppl. 1), 123
  14. Enesco M & Puddy D (1964). Increase in the number of nuclei and weight in skeletal muscle of rats of various ages. Am J Anat 114, 235
  15. Giddings CJ & Gonyea WJ (1992). Morphological observations supporting muscle fiber hyperplasia following weight-lifting exercise in cats. Anat Rec 233, 178
  16. Grounds MD (1998). Age-associated changes in the response of skeletal muscle cells to exercise and regeneration. Ann N Y Acad Sci 854, 78
  17. Hall ZW & Ralston E (1989). Nuclear domains in muscle cells. Cell 59, 771
  18. Hawke TJ, Meeson AP, Jiang N, Graham S, Hutcheson K, DiMaio JM & Garry DJ (2003). p21 is essential for normal myogenic progenitor cell function in regenerating skeletal muscle. Am J Physiol 285, 1019–1027.
  19. Hikida RS, Walsh S, Barylski N, Campos G, Hagerman FC & Staron RS (1998). Is hypertrophy limited in elderly muscle fibers? A comparison of elderly and young strength-trained men. Basic Appl Myol 8, 419–427.
  20. Jonsdottir IH, Schjerling P, Ostrowski K, Asp S, Richter EA & Pedersen BK (2000). Muscle contractions induce interleukin-6 mRNA production in rat skeletal muscles. J Physiol 528, 157
  21. Kadi F (2000). Adaptation of human skeletal muscle to training and anabolic steroids. Acta Physiol Scand 646, 1–52.
  22. Kadi F, Charifi N, Denis C & Lexell J (2004). Satellite cells and myonuclei in young and elderly women and men. Muscle Nerve 29, 120
  23. Kadi F, Eriksson A, Holmner S, Butler-Browne GS & Thornell LE (1999b). Cellular adaptation of the trapezius muscle in strength-trained athletes. Histochem Cell Biol 111, 189
  24. Kadi F, Eriksson A, Holmner S & Thornell L-E (1999a). Effects of anabolic steroids on the muscle cells of strength-trained athletes. Med Sci Sports Exerc 31, 1528
  25. Kadi F & Thornell LE (2000). Concomitant increases in myonuclear and satellite cell content in female trapezius muscle following strength training. Histochem Cell Biol 113, 99
  26. Laurent G, Sparrow M & Millward D (1978). Turnover of muscle protein in the fowl. Changes in rates of protein synthesis and beackdown during hypertrophy of the anterior and posterior latissimus dorsi muscle. Biochem J 176, 407
  27. McGeachie JK (1985). The fate of proliferating cells in skeletal muscle after denervation or tenotomy: an autoradiographic study. Neuroscience 15, 499
  28. McGeachie JK & Grounds MD (1989). The onset of myogenesis in denervated mouse skeletal muscle regenerating after injury. Neuroscience 28, 509
  29. Mauro A (1961). Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9, 493
  30. Moss FP & Leblond CP (1971). Satellite cells as the source of nuclei in muscles of growing rats. Anat Rec 170, 421
  31. Newlands S, Levitt LK, Robinson CS, Karpf AB, Hodgson VR, Wade RP & Hardeman EC (1998). Transcription occurs in pulses in muscle fibers. Genes Dev 12, 2748
  32. Putman C, Dusterhoft S & Pette D (1998). Changes in satellite cell content and myosin isoforms in low frequency stimulated fast muscle of hypothyroid rat. J Appl Physiol 86, 40–51.
  33. Rennie MJ, Wackerhage H, Spangenburg EE & Booth FW (2004). Control of the size of the human muscle mass. Annu Rev Physiol 66, 799
  34. Rodrigues-Ade C & Schmalbruch H (1995). Satellite cells and myonuclei in long-term denervated rat muscles. Anat Rec 243, 430
  35. Roth SM, Martel GF, Ivey FM, Lemmer JT, Tracy BL, Metter EJ, Hurley BF & Rogers MA (2001). Skeletal muscle satellite cell characteristics in young and older men and women after heavy resistance strength training. J Gerontol a Biol Sci Med Sci 56, 240–247.
  36. Roy R, Monke S, Allen D & Edgerton V (1999). Modulation of myonuclear number in functionally overloaded and exercised rat plantaris fibers. J Appl Physiol 87, 634
  37. Schiaffino S, Bormioli SP & Aloisi M (1972). Cell proliferation in rat skeletal muscle during early stages of compensatory hypertrophy. Virchows Arch B Cell Pathol 11, 268
  38. Schjerling P (2001). The importance of internal controls in mRNA quantification. J Appl Physiol 90, 401
  39. Schubert W, Zimmermann K, Cramer M & Starzinski-Powitz A (1989). Lymphocyte antigen Leu-19 as a molecular marker of regeneration in human skeletal muscle. Proc Natl Acad Sci U S A 86, 307
  40. Schultz E & Lipton BH (1982). Skeletal muscle satellite cells: changes in proliferation potential as a function of age. Mech Ageing Dev 20, 377
  41. Schultz E & McCormick KM (1994). Skeletal muscle satellite cells. Rev Physiol Biochem Pharmacol 123, 213
  42. Sinha-Hikim I, Roth SM, Lee MI & Bhasin S (2003). Testosterone-induced muscle hypertrophy is associated with an increase in satellite cell number in healthy, young men. Am J Physiol 285, 197–205.
  43. Snow MH (1990). Satellite cell response in rat soleus muscle undergoing hypertrophy due to surgical ablation of synergists. Anat Rec 227, 437
  44. Tipton KD & Wolfe RR (1998). Exercise-induced changes in protein metabolism. Acta Physiol Scand 162, 377
  45. Zammit P & Beauchamp J (2001). The skeletal muscle satellite cell: stem cell or son of stem cell? Differentiation 68, 193
  46. Zhang P, Wong C, Liu D, Finegold M, Harper JW & Elledge SJ (1999). p21 (CIP1) and p57 (KIP2) control muscle differentiation at the myogenin step. Genes Dev 13, 213